- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Sheng, Peiyao (2)
-
Viswanath, Pramod (2)
-
Fanti, Giulia (1)
-
Kannan, Sreeram (1)
-
Nayak, Kartik (1)
-
Ni, Ronghao (1)
-
Roy, Pronoy (1)
-
Tang, Weizhao (1)
-
Wang, Gerui (1)
-
Wang, Xuechao (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
Böhme, Rainer (1)
-
Kiffer, Lucianna (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Böhme, Rainer; Kiffer, Lucianna (Ed.)Crash fault tolerant (CFT) consensus algorithms are commonly used in scenarios where system components are trusted - e.g., enterprise settings and government infrastructure. However, CFT consensus can be broken by even a single corrupt node. A desirable property in the face of such potential Byzantine faults is accountability: if a corrupt node breaks the protocol and affects consensus safety, it should be possible to identify the culpable components with cryptographic integrity from the node states. Today, the best-known protocol for providing accountability to CFT protocols is called PeerReview; it essentially records a signed transcript of all messages sent during the CFT protocol. Because PeerReview is agnostic to the underlying CFT protocol, it incurs high communication and storage overhead. We propose CFT-Forensics, an accountability framework for CFT protocols. We show that for a special family of forensics-compliant CFT protocols (which includes widely-used CFT protocols like Raft and multi-Paxos), CFT-Forensics gives provable accountability guarantees. Under realistic deployment settings, we show theoretically that CFT-Forensics operates at a fraction of the cost of PeerReview. We subsequently instantiate CFT-Forensics for Raft, and implement Raft-Forensics as an extension to the popular nuRaft library. In extensive experiments, we demonstrate that Raft-Forensics adds low overhead to vanilla Raft. With 256 byte messages, Raft-Forensics achieves a peak throughput 87.8% of vanilla Raft at 46% higher latency (+44 ms). We finally integrate Raft-Forensics into the open-source central bank digital currency OpenCBDC, and show that in wide-area network experiments, Raft-Forensics achieves 97.8% of the throughput of Raft, with 14.5% higher latency (+326 ms).more » « less
-
Sheng, Peiyao; Wang, Gerui; Nayak, Kartik; Kannan, Sreeram; Viswanath, Pramod (, Springer)Player-replaceability is a property of a blockchain protocol that ensures every step of the protocol is executed by an unpredictably random (small) set of players; this guarantees security against a fully adaptive adversary and is a crucial property in building permissionless blockchains. Forensic Support is a property of a blockchain protocol that provides the ability, with cryptographic integrity, to identify malicious parties when there is a safety violation; this provides the ability to enforce punishments for adversarial behavior and is a crucial component of incentive mechanism designs for blockchains. Player-replaceability and strong forensic support are both desirable properties, yet, none of the existing blockchain protocols have both properties. Our main result is to construct a new BFT protocol that is player-replaceable and has maximum forensic support. The key invention is the notion of a ``transition certificate'', without which we show that natural adaptations of extant BFT and longest chain protocols do not lead to the desired goal of simultaneous player-replaceability and forensic support.more » « less
An official website of the United States government

Full Text Available